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We have constucted a nematic liquid crystal system that exhibits the dynamics of a two-
dimensional XY -model. The system consists of liquid crystal material placed between two sapphire

windows coated with homeotropic alignment material.

By holding the windows at two different

temperatures, a thermal gradient can be maintained across the liquid crystal material such that the
nematic-to-isotropic interface occurs at the center of the cell in a plane parallel to the two window
surfaces. The boundary conditions that the interface and one of the windows impose on the nematic
phase force the system’s degrees of freedom to be those of the XY model. Comparison between
experiment and numerical simulations indicate the system exhibits planar XY -model behavior.

PACS number(s): 61.30.Jf, 64.60.Cn, 05.70.Fh

When a system is rapidly quenched through a
symmetry-breaking phase transition topological defects
are produced. Following the quench the density of defects
generally decreases with time. Often the growth of or-
der for such systems exhibits self-similar scaling. In such
cases the growth of order can be characterized by various
scaling exponents. In particular, the growth of the corre-
lation length L(t) as a function of time ¢ since the quench
is characterized by the scaling exponent ¢, L(t) ~ t%.
The spatial structure in the self-similar scaling regime is
partially characterized by the scaling exponent x which
describes how the structure factor S(q) scales for large
transverse wave vector g, S(g) ~ ¢~*. The rate at which
memory of the initial conditions decays away is in part
characterized by the scaling exponent X which describes
how the two-time correlation function C(t,to) scales as
a function of the correlation length L(t) when ¢ becomes
large compared to to, C(t,to) ~ L(t)~*. Recently, con-
siderable theoretical effort [1,2] has been devoted to-
ward calculating these scaling exponents. Although there
has been extensive work on the growth of order in sys-
tems possessing domain walls [3-5], only recently [6-13]
has there been significant experimental work on systems
containing topological defects with lower dimensionality.
Most of the theoretical work has concentrated on sys-
tems with an n-dimensional vector order parameter, the
so called O(n) models. Generally, the scaling exponents
&, p, and X depend on both the dimensionality n of the
order parameter and the spatial dimensionality d of the
system. One special case, n = 2 and d = 2, is called
the planar XY model. Numerical simulations and the-
oretical predictions for ¢ and p for this system indicate
¢ < 0.5 [3,14,15] and p = 4[16,17]. Only a 1/n ex-
pansion for X exists and only two terms of this expan-
sion have been evaluated [18]. To this order A = 1.171.
The planar XY model is of particular interest because
it has proven challenging to provide a rigorous theoreti-
cal description of the coarsening behavior for the system
[19] and it has proven difficult to reach the self-similar
scaling regime through numerical simulations [7-10,20-
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22] in order to extract reliable scaling exponents. It is
thus of considerable interest to devise experimental sys-
tems exhibiting planar XY -model behavior with which
one might measure the scaling exponents characterizing
the coarsening. A thin film of smectic liquid crystal ma-
terial which undergoes the smectic-A to smectic-C tran-
sition, in principle, would provide such a system. The zy
degree of freedom is provided by the direction in which
the director chooses to tilt. Previous work with smectic
liquid crystals [8-10] so far has not resulted in suitable
systems for measuring the scaling exponents for the XY
model. Presumably, dislocations in smectic layers were
responsible for the observed deviations from XY -model
behavior. Lyotropic liquid crystal systems exhibiting a
nematic phase have been used [12] to measure the scaling
exponents ¢ and u. The measured experimental values
are consistent with the theoretical values given above.
Because of the limited temperature range, low optical ac-
tivity of the nematic phase, and the multicomponent na-
ture of the liquid crystal material, these systems proved
difficult to work with. Here we describe a thermotropic
nematic liquid crystal system that is more convenient to
work with and that does exhibit XY-model behavior as
indicated by a comparison of the time evolution of the
system with numerical simulations. This system was de-
veloped with the goal of measuring X. However, an initial
bias in the director field has prevented us from attaining
the self-similar scaling regime. Although this has pre-
vented us from measuring X, the small bias required in
simulations to fit the data indicates it should be possible
to improve this system further and make such measure-
ments in the future.

The system consists of nematic liquid crystal material
placed between two sapphire windows as shown in Fig.
1. An axial thermal gradient through the liquid crystal
material was maintained by holding the lower window
at a higher temperature than the upper window. By
a suitable choice of window temperatures the nematic-
to-isotropic interface could be maintained near the cen-
ter of the cell in a plane parallel to the windows. For
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FIG. 1. Experimental arrangement.

the thermotropic liquid crystal material used, the direc-
tor field (local molecular orientation) n for the nematic
phase lies at an angle of 63.5° to the normal of the inter-
face at the interface [31,32]. This provides the zy degree
of freedom for the system. The upper sapphire window is
coated with homeotropic alignment material, forcing the
director to be perpendicular to the plane of the window.
The defects in a planar XY -model system are pointlike
and the order parameter has an integer winding num-
ber about the defect. Figure 2 shows an example of the
structure of the defects for the present system. The de-
fects in our system consist of halves of hedgehogs and
hyperbolic hedgehogs whose singular points are at the
nematic-to-isotropic interface. These defects are also re-
ferred to as “boojums” [23,33]. The structure of these
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FIG. 2. Director configuration. For ease of depicting the
configuration, this view is inverted from the actual experi-
mental arrangement.
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defects has been described by Lavrentovich and Nastishin
[24, 25]. It should be noted that a nematic liquid crystal
material does not distinguish between n and —n since
the order parameter is a double-headed arrow (symmet-
ric second rank tensor) rather than an arrow (vector)
(26, 27]. However, because of the boundary conditions
at the window surface and at the nematic-to-isotropic
interface, this symmetry is effectively broken. That is,
defects with a winding number of % are not long-lived
in this geometry. If present, a type % disclination line
would rapidly move to the interface and annihilate. The
order parameter, which we take to be the director at
the nematic-to-isotropic interface, is a vector of constant
length, constrained to lie in a plane, as required for a
system governed by XY -model dynamics. We will some-
times refer to this vector as a “spin vector” which is con-
venient terminology originally used for magnetic materi-
als. A quench is induced by first heating both windows to
a temperature sufficiently high that the liquid crystal ma-
terial is in the isotropic phase throughout the sample cell.
The temperature of the upper window is then suddenly
reduced so that the resulting steady state temperature
gradient maintains the nematic-to-isotropic interface at
the center of the cell. Because of the finite size of the cell
there is some three dimensionality at very early times
after the quench. However, when the spacing between
defects becomes comparable to the spacing between the
windows the defect dynamics of the system crosses over
to two-dimensional XY -model behavior.

The liquid crystal material used in the experiments
reported here was 4-cyano-4’-n-pentylbiphenyl, known
as K15 or 5CB. The spacing between the windows was
75 pm. The sample cell was heated from below with
a resistively heated aluminum plate. The top win-
dow of the cell was a 1 mm thick sapphire disc with
the standard 7° orientation for the optical axis and
coated with a surfactant, N,N-dimethyl-N-octadecyl-
3-aminopropyltrimethoxysilylchloride (DMOAP), that
homeotropically aligns the director normal to the sur-
face. The bottom window was a 3 mm thick, 0° sap-
phire disk. Sapphire was used because it is impera-
tive to minimize radial thermal gradients (in the plane
of the windows) in order that the isotropic-to-nematic
interface be maintained near the center of the sample
cell. The thermal conductivity of sapphire is about 40
Wm~!K™!, which is about 40 times that of glass. The
top window was cooled with a controlled air stream, cre-
ating the thermal gradient along the axis. The time
for the entire field of view (1.42 mm) to undergo the
isotropic-to-nematic phase transition was 0.070 £ .030
sec. Earlier measurements with a similar sample cell
[13] showed that the thermal quench occured at a rate
of 0.3°C/s. Using this number for the present set of ex-
periments gives a radial thermal gradient on the order
of (dT'/dt)(At/Az) = (0.3)(0.070/1.42) = 0.015°C/mm.
Pointlike defects formed when a thermal quench forced
the liquid crystal material at the upper window to go
from the isotropic phase into the nematic phase. The
defects were observed using an Olympus inverted mi-
croscope, illuminated from above with linearly polarized
light. A Nikon M Plan 2.5/0.075 lens was employed. A
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crossed polarizer between the sample cell and the objec-
tive allowed the incident linearly polarized light to be
transmitted maximally when the director field was ori-
ented at 45° to the polarizers. The strain field around a
+1 defect thus appears as a cross (“schlieren pattern”)
with four dark brushes separated by four regions of maxi-
mal light transmission. A high speed color videorecorder
(NAC Corp. Model HSV-400) was used to record the
images at 200 frames per second.

The left-hand column of Fig. 3 shows a typical coars-
ening sequence with images taken from a sample area of
1.42 x 1.42 mm? at 30, 100, and 300 seconds. The video
images have been processed so that the pixels are either
black or white. The schlieren pattern clearly identifies
the defects and shows they all have winding numbers
of £1. From images such as these it is straightforward
to measure the defect density. Apart from an arbitrary
global rotation or reflection it is also possible to recon-
struct the director field n(r,t) from these schlieren im-
ages. We have performed such reconstructions in order to
measure the time dependence of the two-time correlation
function, C(t, o), given by

C(t,t0) = (n(t) - n(to)) = (cos(¢(t) — d(to)]), (1)

t = 40 iterations

-

- [ 3
t = 400 iterations

[

t = 300 seconds t = 1200 iterations

FIG. 3. Two coarsening sequences. Left-hand column: a
single experimental run, 504; right-hand column: a single sim-
ulation using the 20 sec director field from run 504 as the ini-
tial condition. See text for a discussion on the generation of
schlieren patterns.

where ¢ is the angle that the director n makes with re-
spect to the z axis. The average is a spatial average. Al-
though the director n varies smoothly, in our reconstruc-
tions of the director field only the octant of orientation
of the director was determined. Schlieren patterns that
have been saturated so that the pixels are either black
or white are well suited for this kind of reconstruction.
Numerical simulations showed that such a discretized ap-
proximation of the director field still gives an accurate
measurement for C(t, o).

The behavior of the system was compared with numer-
ical simulations of an XY -model system governed [10] by
the equation of motion

do; .
1 kY sin(si - 02) (2
j

where i and j label lattice sites and ¢; is the angle that
the spin vector at site ¢ makes with respect to the z axis.
Either square or triangular lattices were used, with the
sum carried out over the nearest neighbors j surround-
ing a given lattice site i. The reorientational viscosity is
denoted by v and the coupling strength between near-
est neighbor spins is given by k. The Langevin noise 7;
driving spin diffusion has zero mean and the moments

(mi(t)m; (¢')) = 2kpTv8:,;6(t — 1), 3)

where kp is Boltzmann’s constant and T is the tempera-
ture of the heat bath responsible for the Langevin noise.
This equation is numerically evaluated with the Euler
update method [28]:

di(t + At) = ¢;(t)

where the constants < and v can arbitrarily be set equal
to 1. The time is reported in number of time steps (iter-
ations), M, where t = M At is the dimensionless time.
We used a time step of At = 0.05 which is half the
maximum allowed by stability analysis of Eq. (4). No
differences were observed in the defect dynamics when
At = 0.005. At each time step the Langevin noise
amplitudes n;(t) = 2mcyr; were generated by randomly
selecting numbers 7; with a uniform distribution over the
interval [—0.5, 0.5]. The amplitude of the Langevin noise
is determined by the constant cz,. A value of ¢; = 2 was
used for the simulations reported here. This noise am-
plitude is well below the value c¢;, = 3 where a significant
number of [29] short-lived defect pairs begin to be cre-
ated. A value of ¢y = 2 results in random fluctuations
in the angle ¢; at each lattice site with an average of 9°
every time step. The n; thus have zero mean and the
discretized version of Eq. (3) is

2
(mi(mAt)n; (nA)) = T} b138m,ms (5)

where m and n are integers.
The simulations were performed on a variety of com-
puters, and, unless stated otherwise, periodic boundary



49 PLANAR XY-MODEL DYNAMICS IN A NEMATIC LIQUID . ..

conditions were employed. Most of our numerical sim-
ulations were done on a personal computer (Zeos Corp.
Model 486) using a 100x 100 array on a triangular lattice
with the sum over the six nearest neighbors. This was
sufficient to compare our simulations with experimental
results over at least three decades in time. The finite-size
effects, due to periodic boundary conditions, become no-
ticeable after about 5000 iterations when there are fewer
than ten defects and the correlation length £ is compa-
rable to the system size. Therefore, we ran some larger
simulations with a 1024 x 1024 array, performed on a par-
allel processor machine containing 128 x 128 4-bit micro-
processors (Model MP-1216D; MasPar Computer Corpo-
ration). It took eight hours of central processor time to
perform M = 10° iterations. On the MasPar machine
we used a square lattice array, summing in Eq. (4) over
eight nearest neighbors. No differences in scaling have
been observed using the two different geometries, but the
triangular lattice initially allows for a denser network of
defects. On the Zeos machine, defects were identified by
going around each triangle in the array and checking to
see if the director field rotated through +2x. On the
Maspar machine, defect cores were identified by calcu-
lating the local strain energy & = Y .[1 — cos(¢; — ¢;)]
at each site 7. If &; exceeded a thresho id value and was a
local maximum at site %, the site was identified as a defect
core. At times earlier than 30 iterations, when the defect
density is high, this algorithm undercounts the number
of defects by a factor of 2 when compared with the algo-
rithm used on the Zeos 486 machine. For M > 100 iter-
ations both algorithms were in excellent agreement with
each other and only identified defects that were visually
apparent in test images generated from the director field
arrays.

The correlation function was determined, for simula-
tions performed on the Zeos machine, from Eq. (1) by
summing over all lattice positions ::

Clt:to) = 13 Zcos[(b,(t) #:(to)], (6)

where L = 100 was the array size. The initial time is
to = 1 iteration.

In order to directly compare our experimental results
with XY -model dynamics we ran a series of simulations
which used as their initial conditions, not a random direc-
tor field, but rather one obtained from experiment. We
arbitrarily chose run 504 (out of nine possible runs). The
video image at 20 sec was used to convert the black and
white schlieren pattern into a director-field map. This
map was then used as the initial condition. Figures 3-5
compare the experimentally attained visual images, de-
fect densities, and correlation functions with those ob-
tained by numerical integration. In all these figures, free
boundaries were used instead of periodic boundaries for
the numerical simulations. Figure 3 compares the results
of the numerical simulations (right-hand column) with
experiment (left-hand column). For comparison with ex-
periment, the director field ¢; was displayed as a schlieren
pattern by shading a pixel at site ¢ white if the threshold,
sin?(2¢;) ~ 0.5, was exceeded and black otherwise. The
¢ map was smoothed over nearest neighbors whenever
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FIG. 4. Defect number versus time for run 504 (open

circles) and averaged data for six simulations based on run
504 (error bars). The solid line shows the expected scaling
N(t) o t™t.

generating an output image in order to display clearly
the underlying schlieren pattern which would otherwise
be very hard to see due to the Langevin agitation of the
director field. The times for the right-hand column were
40, 400, and 1200 iterations.

Figure 4 shows the decay in the number of defects N(t)
as a function of time for both the experimental data and
numerical simulations. The late time scaling expected
for the XY model, N(t) ~ t72% ~ t~!, is shown by
the solid line. The open circles are the data from run
504, counted over a region (1.42)2 mm?, and the dots
with error bars are the averaged results from six simu-
lations where the initial conditions were taken from run
504 at 20 sec and the simulation times (in iterations)
are scaled to experimental times (in seconds) by the re-
lation tgm = 3.5ts04 — 60. This gave the best fit and
is slightly different from the conversion used for the sin-
gle run shown in Fig. 3, tgim = 4f504 — 80. The error
bars indicate the variance in N(t) which increases with
time due to Langevin noise. Although the data follow the
theoretically expected slope of —1 over approximately a
decade, one can see that at late times the defects disap-
pear faster that expected. Note that the experimental
data and the numerical simulations, starting with the
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FIG. 5. Two-time correlation function for the same con-

ditions discussed in Fig. 4. The slope of —0.586 for the solid
line is that predicted by Bray and Humayun [1], for a scaling
C(t,to) ox t~0-588,
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same initial conditions at 20 sec, track each other well.
Differences between the two are due to different bound-
ary conditions and the Brownian motion of the defects,
induced by the Langevin noise in the simulations.

Figure 5 depicts the two-time correlation function,
C(t,to), versus time for data from run 504 (open circles)
and six simulations (dots with error bars). The late time
scaling of the two-time correlation function expected for
the XY model with uniform random initial conditions,
C(t,to) ~ t~%* ~ t~0-585 is indicated by a solid line. Al-
though our experimental data and numerical simulations
do not enter the scaling regime, the experimental data
and the numerical simulations track each other well.

The preceding three figures, which compare experi-
ment with numerical simulations starting with the same
initial conditions, demonstrate that the system is gov-
erned by XY model dynamics. That the experiment and
the simulations do not exhibit the expected scaling be-
havior for the number density N(t) or the two-time cor-
relation function C(t,to) indicates that some aspect of
the initial director field is preventing the system from
reaching a self-similar scaling regime. In order to eval-
uate the effect of a nonuniform probability distribution
for the angle that the director field makes with respect
to the = axis, we ran simulations with normalized prob-
ability distributions of the form

P(§) = 5-[1+ Acos(nd)] | (7

where A will be referred to as the bias parameter and
n specifies the multipole character of the deviation of
the probability distribution from a uniform distribution,
n = 1 being dipolar, n = 2 being quadrupolar, etc. The
construction of random number generators whose output
¢ has the probability distribution Eq. (7) is straightfor-
ward. In particular, if one has a random number gen-
erator outputing x such that the probability distribution
P(z) is uniform over the interval [—0.5, 0.5], all one needs
is a map ¢(z) of z to the interval [0, 27] such that Eq. (7)
holds. One way of accomplishing this is to assume that
¢(x) is monotonic and demand that the total probabil-
ity of generating a value in the subintervals [0,z] and
[0, ¢(z)] be preserved

Tt [ pinag = S A
a::/o dz :/0 P(¢)d¢—§;+—sm(n¢).

2mn
(8)

This gives the transformation relation
A .
2rz = ¢ + — sin(ng). (9)
n

Since this equation does not yield a simple analytic ex-
pression for ¢ as a function of z, we used this equation
to generate lookup tables to provide the mapping of = to
@.
The results of the simulations using these nonuniform
probability distributions are shown in Figs. 6 and 7.
Each sequence of data in Fig. 6 is a plot of the number
of defects, averaged over at least ten runs, versus time.
The solid line shows the expected asymptotic scaling of
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FIG. 6. The number of defects versus time in iterations

obtained from computer simulations using Eq. (4) for different
values of the bias parameter, A. The solid line has a slope of
—1.0. The symbols and their respective values for the bias
parameter A are shown in the inset.

the number of defects, N(t) oc t=1-°. The values of bias
are all for a dipolar distortion from the uniform distri-
bution, n = 1 in Eq. (7), except for the data shown by
the solid circles which was quadrupolar with n = 2 and
A = 0.30. The symbols are labeled in the inset, with
values of A ranging from 0 to 0.5. A fit through the
last decade of the zero-bias data gives the relationship
N(t) o< t7¥ with v = 0.928 £ .010 for the decay of the
defect density. This differs from the expected asymptotic
scaling of t~! because of logarithmic corrections due to
the finite core size of the defects [10]. From Fig. 6 it
is apparent that a dipolar distortion causes the defect
density to decay more rapidly than t~! scaling at late
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FIG. 7. The data of Fig. 6 but showing the time depen-

dence of the two-time correlation function C(t,1), as given in
Eq. (6). The solid line has a slope of —0.585, as predicted by
Bray and Humayun [1]. The symbols and values for the bias,
A, are as in Fig. 6. The inset shows the linear relationship
between the minimum value for the correlation function and
the bias.



times. Note that the case A = 0 is indistinguishable
from the case of a quadrupolar distortion with A = 0.3.
In fact, the late time behavior of the decay of the defect
density and the two-time correlation function is insen-
sitive to distortions from a uniform distribution for the
initial ¢; that involve only quadrupolar or higher distor-
tions. This was verified through numerical simulations
in which n of Eq. (7) ranged from 1-8 and A was chosen
to be 0.3. The resulting curves for the number of de-
fects and the two-time correlation function were indistin-
guishable from those obtained for a uniform distribution
A = 0. For example, for the hexadecapolar distribution
(n = 8) with a bias of A = 0.3, the number of defects
is N = 2.60 & 0.51 at a time ¢ = 10* iterations. This
is within the statistical uncertainty of the defect number
for no bias, N = 2.97 4+ 0.28. The respective two-time
correlations differ slightly and are C(10%,1) = 0.027 and
0.036.

Figure 7 is the two-time correlation function plotted
for various values of the bias parameter, A, for the same
conditions as in Fig. 6. The symbols and values for A
are the same as in Fig. 6. Both Figs. 6 and 7 show that
the quadrupolar bias has no effect on the scaling of the
defect number or correlation. The solid line has a slope
of —0.586, the value predicted by Bray and Humayun [1]
using the Mazenko model [2]. This is close to the scaling
exponent extracted from the final decade for our zero-bias
data, a = 0.543 £ 0.009. The inset shows the asymptotic
values reached for the two-time correlation function as a
function of bias and shows that the bias initially aligns
a fraction of the director field in a preferred direction,
that fraction resulting in the minimum value for C(t,1)
for t >> 1.

In order to compare theory with experiment, we aver-
aged the results for the defect density and the two-time
correlation function as a function of time for nine exper-
imental runs. In each experimental run we recorded the
defect dynamics for a different area of the sample cell. In
each case the area was (1.42)2 mm?. Figure 8 shows aver-
aged values, on a logarithmic scale, of the defect number
versus time for the nine experimental runs (solid circles)
and at least 30 numerical simulations for each bias value,
A. The numerical simulation data were rescaled to give
the best fit to the experimental data, with tsm = 17texpt
and Ngim = Nexpt/3.0. The scaling factor in time is larger
than used previously for the comparison with run 504 (17
versus 4) because these simulations were initiated from a
random defect distribution with about 4000 defects ini-
tially. The defects scale with time as NIn N « ¢! and
do not approach the asymptotic limit until several hun-
dred iterations later, by which time the defect density is
scaling similarly to the experimental data of 20 or 30 sec.
The solid line has a slope of —1 indicating the expected
scaling behavior for the defect number. Although the
experimental data follow this line over the time interval
from 20 to 200 seconds, it drops below the line both at
short and at long times. The deficit of defects at early
times is real and not due to an inability to resolve closely
spaced defects. It is a measure of the number of defects
generated at the quench time ¢ = 0. This is partly de-
termined by the growth rate of the nematic-to-isotropic
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FIG. 8. Number of defects versus time, averaged for nine

experimental runs (solid circles). The solid line is the ex-
pected N o t~! scaling. The results of the simulations, using
Eq. (4), are shown for different values of the initial distribu-
tion bias parameter, A. The values for A are shown in the
inset. The times are in seconds, with the scaling of iterations
discussed in the text.

interface during the temperature quench. As discussed
above, for the simulations the defect density as a func-
tion of time can be induced to decay away faster than
t~1, provided initial conditions are employed in which a
dipolar component is present in the probability distribu-
tion for the ¢;. The symbols for the various values of
A, ranging from 0 to 0.2, are defined in the inset. The
simulations most closely follow the data points for a bias
of A = 0.07. As an indication of the amount of initial
director field bias, this comparison between experiment
and theory should be regarded as qualitative rather than
quantitative because logarithmic corrections to scaling,
due to the finite core size of the defects, are still impor-
tant for the numerical simulations [10].

In Fig. 9 the two-time correlation function C(t,to) is
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FIG. 9. As for Fig. 8 but showing the scaling of the two-

time correlation function, C(t,t0). The correlations were de-
termined in the simulations by the use of Eq. (6).
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plotted for conditions similar to those for Fig. 8. The ini-
tial time is taken to be to = 20 sec for the experimental
data and to; = 400 iterations for the numerical simula-
tions. The symbols and values for A are the same as in
Fig. 4. The experimental values at late times exhibit a
decay with an exponent, v = 0.360 £ 0.010. As before,
the best fit to the data is for a bias parameter A = 0.07.
The solid line has a slope of —0.586 which the data do
not follow.

For systems with a small initial bias in the order pa-
rameter, the growth of the “magnetization” provides a
useful means of characterizing the growth of order [30].
For our system, the “magnetization” is given by

M(t) = f% > n(r,t), (10)

where the sum is over position and N is the number of
pixels (in a frame-grabbed image) or lattice sites. For
small initial bias and sufficiently high initial defect den-
sity, the magnitude M (t) of the magnetization is pre-
dicted to grow as

M(t) = [M(t)] < L(2)* (11)

at early times where A = d — X = 0.83. Eventually, as
the correlation length approaches the system size, the
magnetization saturates. Thus, under suitable condi-
tions, the scaling exponent A can be determined from
the slope of the curve obtained by plotting M (t)/M(to)
versus L(t)/L(to) on log-log paper. Figure 10 compares
the results of seven experimental runs with, for different
values of initial bias, numerical simulations. The solid
line has the predicted slope of 0.83. A least squares fit
to the data obtained from the simulations with a bias
of A = 0.02 over the time interval, log,o(t) = 0.3 to
1.3, gives a slope of 1.060 + 0.005 which is comparable
to the predicted slope. In contrast, a least squares fit
(from log(t) = 0.3 to 1.3] for the experimental data gives
a slope of 0.518 + .021. The experimental data is thus
in the “saturated magnetization” regime because the de-
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FIG. 10. Net director orientation (magnetization) as a
function of normalized correlation length for different bias
values A. The solid line has the predicted slope as given in
Eq. (11) with A = 0.83.
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fects have been coarsening for 20 sec before we are able
to analyze the data accurately. In fact, following the
procedure discussed above, if we rescale the numerical
simulation data by choosing M (to) and L(to) at time
t0,sim = 17tg expt = 350, we get the saturated magnetiza-
tion results shown in Fig. 11. The experimental data are
in good agreement with the shifted numerical data for the
optimum bias value A = 0.07 used to fit the experimental
data shown in Figs. 8 and 9.

Comparison of numerical simulations with the experi-
ments indicate the presence of a bias in the initial director
field. The source for this initial bias is unknown. The air
flow cooling process generates small thermal gradients,
hence during a quench the nematic phase first appears
in a few patches which then grow and fill the entire field
of view. It is possible that this directional propagation
of the nematic-to-isotropic interface gives rise to a pref-
erential bias in the initial director field. It is also possi-
ble that some preferential alignment in the homeotropic
alignment material is responsible for the initial director
field bias. The quality of the alignment material is sensi-
tive to preparation conditions. For example, if a droplet
of water was rolled across the cell window after applica-
tion of the homeotropic alignment material, then a bare
streak, devoid of defects, was observed for most of the
experimental run. Any defects that formed during the
thermal quench in these affected areas rapidly annealed
away in a few seconds, indicating the alignment material
had been affected. However, the absence of confinement
effects of the type seen in smectics [8] indicates that a
preferential alignment in the homeotropic alignment ma-
terial, if present, is not strong enough to produce con-
finement on the length scales of the present experiment.

In conclusion, a nematic liquid crystal system has been
constructed that exhibits the defect dynamics of a two-
dimensional XY model. This is verified by using the
early-time director field from experimental runs as ini-
tial conditions for the numerical simulation runs. The
defect number N(t) and two-time correlation function
C(t,to) then track each other very well for later times.
The nonscaling of N(t) and C(t,to) can be explained by
a preferential bias in the initial director field. Numer-
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FIG. 11. As for Fig. 10 but with the numerical simulation

data rescaled as discussed in the text. Both lines are labeled
with their respective slopes.
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ical simulations with a biased initial probability distri-
bution exhibit coarsening in good agreement with the
experimentally observed values. In addition, the magne-
tization M(t)/M (to) versus correlation length L(t)/L(to)
indicates the experimental data are in the saturated mag-
netization regime in a system with a bias in the initial
distribution for the director field. More careful sample
preparation may enable one to reduce the preferential
bias in the initial conditions sufficiently so that the scal-

4257
ing regimes can be attained.
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FIG. 1. Experimental arrangement.
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FIG. 2. Director configuration. For ease of depicting the
configuration, this view is inverted from the actual experi-
mental arrangement.
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FIG. 3. Two coarsening sequences. Left-hand column: a
single experimental run, 504; right-hand column: a single sim-
ulation using the 20 sec director field from run 504 as the ini-
tial condition. See text for a discussion on the generation of
schlieren patterns.



